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STOW TRAFFIC AND RELATED ISSUES 

1 Introduction 

We analyze the unclassified traffic data of the Synthetic Theater of War-Europe (STOW-E) dis- 
tributed simulation demonstration, which is an early phase of the Distributed Interactive Simula- 
tion (DIS) program sponsored by Advanced Research Projects Agency (ARPA). In this paper, we 
also make a prediction about the possible traffic in future STOW networks. DIS forms a common, 
consistent, and distributed virtual environment. Different types of simulators can interact using 
unified standard DIS protocols, which can interoperate with future simulation systems. Current 
DIS applications focus on military combat simulations; however, commercial uses of DIS are 
expected in the future. The STOW-E exercise was conducted from 4 - 7 November 1994. It linked 
sixteen world-wide sites in the continental United States, Germany, and England, creating a vir- 
tual world in which real time systems could jointly operate in a variety of domains including land, 
sea, and air. 

In 1983, Defense Advanced Research Projects Agency (DARPA) initiated the Distributed Simula- 
tion program with the Simulation Network (SIMNET) architecture. In this architecture, nodes 
received all information broadcasted by other nodes. However, the receiving nodes only pro- 
cessed relevant information. For a technical overview and history of SIMNET, see [Kana91]. 

AG AG 

DSI Backbone 

AG 

LANs 

Fig. 1 STOW-E Network Configuration. Simulation LANs communicate with each other by way of the DSI WAN 
backbone and the AGs. The seven BRTs in the AGs reduce the unnecessary traffic on the backbone. 

Figure 1 illustrates the conceptual configuration of the STOW-E network, which replaced the sim- 
ple, yet inefficient, broadcast approach of SIMNET. The Defense Simulation Internet (DSI) WAN, 
composed of Tl links, functioned as the backbone for the STOW-E network. Simulation applica- 
tion hosts on ethernet LANs communicated to each other by way of the Application Gateways 
(AGs), which reduced the unnecessary traffic on the backbone. This was accomplished by using 
the following seven Bandwidth-Demand Reduction Technique (BRT) algorithms, which were 
housed in each AG: (1) Protocol Data Unit (PDU) culling to block the transmission of unneces- 
sary PDUs over the WAN, (2) grid filtering to partition a terrain into regions for which updates are 
sent at different rates to accommodate different simulation fidelities, (3) quiescent entity determi- 
nation to identify inactive entities and report them to all remote AGs, (4) Protocol Independent 

1. Acronyms used in this paper are listed in Appendix B. 
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Compression Algorithm (PICA) to remove information redundancy by sending the bit-pattern dif- 
ferences between a reference and the actual bits, (5) bundling to combine PDUs into larger User 
Datagram Protocol/Internet Protocol (UDP/IP) packets to reduce packet rates, (6) overload man- 
agement to spread packet transmissions out in time to reduce traffic burstiness, and (7) LAN filter 
to select and forward only relevant updates to each LAN. The BRT algorithms are explained in 
detail in [HCNF94]. As we will see in a later section, the seven BRT algorithms drastically shaped 
the traffic on the WAN. In STOW-E, the AGs bundled DIS PDUs into 1000-byte packets with a 
maximum time-to-fill interval of 0.04 second. The AGs examined and made complex decisions on 
whether and how to pass the LAN-generated-packets on to the DSI WAN. The only WAN traffic 
not traveling on any LAN was AG-to-AG control traffic. 

The next step in the evolution of the STOW program is the STOW-97 system, in which High Per- 
formance AGs (HPAGs) will replace the STOW-E AGs. The HPAGs exploit new advances in net- 
working technologies such as multicasting, multimedia services, and resource reservation. They 
decouple (interface) higher layer simulation applications from (and) the underlying network layer 
to facilitate independent developments among different system components. Besides HPAGs, 
STOW-97 will incorporate Agents that act as enablers for simulation applications. The STOW-97 
architecture will implement legacy system translators to allow backward compatibility with older 
STOW systems such as SIMNET and STOW-E. A vision of the long-term STOW (i.e., the even- 
tual Advanced Distributed Simulation or ADS) system architecture beyond the 1997 time frame is 
given in [CSTH95]. 

Recently, network researchers have shown increasing interests in self-similar processes. Simply 
speaking, a self-similar process exhibits burstiness over a wide range of time scales. In contrast, 
Poisson-type processes used in conventional traffic models become smooth after only one or two 
time scales. New studies report that many different types of traffic possess self-similarity, includ- 
ing ethernet [LTWW94] and Variable Bit Rate (VBR) video traffic [GaWi94]. Accurate character- 
izations of the traffic data are vital in any network design and management scheme. Therefore, 
one goal of this paper is to relate the STOW-E traffic to self-similar processes. As shown later, the 
traffic shows characteristics that resemble those of Poisson and self-similar processes. 

In Section 2, we plot the overall series of the measured STOW-E traffic. To facilitate visual inves- 
tigation of the traffic, different levels of data zooming are given in a variety of timing scales. Sec- 
tion 3 gives the mathematical framework of long-range dependent processes and of self- 
similarity. Section 4 applies several well-known graphical techniques such as pox and time-vari- 
ance diagrams to determine quantitative characteristics of the traffic data. These plots suggest that 
the STOW-E traffic possesses both Short-Range Dependence (SRD) and Long-Range Depen- 
dence (LRD). The section also gives an overview of existing models for generating synthetic self- 
similar traces. We discuss implications from the analyzed STOW-E traffic on future STOW traffic 
in Sections 5. Section 6 concludes the paper. 

2 STOW-E Traffic Data 

In this paper, we analyze 4 of the 25 traces of the unclassified simulation traffic data from the Avi- 
ation Test Bed (AVTB) at Fort Rucker (Alabama, United States), which was one of two unen- 
crypted sites of the STOW-E exercise. The other unencrypted site was the SIMNET simulator 
suite at Grafenwoehr, Germany. The DIS nodes at Fort Rucker operated at the allocated band- 



width of 600 Kbits/s, and the SIMNET nodes at 1760 Kbits/s. In [NgBa96], we present a statisti- 
cal compilation of all 25 STOW-E traffic traces, and find that the four traces presented here are 
representative. 

Naval Command Control and Ocean Surveillance Center, Research, Development, Test and Eval- 
uation Division (NRaD) designed and implemented the DIS Protocol Dlogger and the WANLog- 
ger for collecting the unclassified data used in our analysis. The Dlogger recorded all DIS traffic 
on a simulation LAN, whereas the WANLogger recorded the network traffic on the WAN side of 
the AG [NRaD95]. Each of the 25 data traces contains the number of traffic bytes1 per 0.01 sec- 
ond. Data trace durations last from 4 minutes to more than 3 hours. In this paper, we discuss our 
analysis of the four traces shown in Table 1 for the following reasons. First, the first 2 traces con- 
tain the most numbers of data points for each WAN and LAN traffic category. Second, unlike 23 
other traces, which contain LAN and WAN traffic at different times, the last two traces contain 
LAN and WAN traffic at the same time. Hence, one can consider the AG at Fort Rucker to be a 
system with LAN2 as input and WAN2 as output. The BRT algorithms, buffer sizes, software and 
hardware configurations in the AG determine the characteristics of the system.We devote all of 
the main sections in this paper to the analysis of the first two traces, and briefly discuss the results 
for the last two traces in Appendix A. In Table 1, the column Null-Interval Count records the 
number of 0.01-second intervals that have no traffic (i.e., zero-byte values). The Sparseness col- 
umn gives the ratio of null intervals to sample sizes; i.e., Sparseness = Null-Interval Count/Sam- 
ple Size. 

TABLE 1. Sample Statistics for STOW-E Traffic 

Traces 
Time 
Duration 

Sample 
Size 

Null- 
Interval 
Count Sparseness 

Sample 
Mean 

Standard 
Deviation 

WAN1 3:42:14 1333416 1221432 .92 81 275 

LAN1 2:04:51 749139 628127 .84 247 903 

WAN2 0:30:00 180086 162207 .90 15 47 

LAN2 0:30:00 180038 172118 .96 15 83 

As the first step in the analysis, we plot the entire time series for trace LAN1 and trace WAN1, 
in the finest time units of 0.01 second, in Figs. 2(a) and 3(a), respectively. Notice a marked 
contrast in the traffic profiles in Figs. 2(a) and 3(a): the WAN traffic is much smoother than the 
LAN traffic as a result of the BRT algorithms in the AG at Fort Rucker. 

To further investigate the burstiness of the traffic, following [LTWW94], we plot the data on sev- 
eral different larger time scales ranging from 0.1 to 10 seconds in Figs. 2 and 3. In Fig. 3, the 
WAN traffic looks smooth on the first time scale (0.01 second) and then becomes bursty on larger 
scales (0.1 - 10 seconds). In contrast, the LAN traffic in Fig. 2 exhibits burstiness on all four time 
scales. We will quantify the level of the traffic burstiness in Section 4. The above observations are 
consistent with the fact that the BRTs are effective, at least on the first time scale in smoothing out 

1. The DSI WAN and the Ethernet LANs use broadcasting network protocols; therefore, the data points represent 
both the transmitted and received traffic. 



the traffic before it is injected into the WAN backbone. Using the Bundling algorithm, each AG 
collects LAN PDUs and bundles them into larger packets for transmission over the WAN. A 
larger packet accumulates the PDUs based on a timer and a buffer limit. Then the bundling packet 
is transmitted to the WAN. Additionally, by setting up a maximum upper limit for the WAN- 
bound packet rate, the Load Leveling algorithm smooths out short-term traffic spikes. 

To study the STOW-E traffic in detail, we further plot both the LAN and the WAN traces for dis- 
joint time windows in Figs. 4 - 9. Each of the plots is composed of 1000 samples, and the sample 
size varies from 0.01 second to 1 second, as shown in the figures. Notice that the plots of scales 
0.01 and 0.1 second in Figs. 4 and 5 show that the LAN traffic behaves like a periodic train of 
clusters. Each cluster has its own probability distribution. The start of each cluster is associated 
with data initiated from user simulation software, whereas pulses within each cluster correspond 
to data generated by network hardware or software. This observation agrees with the train model 
introduced in [JaRo86]. 

3 Long-Range Dependence Processes and Self-Similarity 

In this section, we review the mathematical framework of long-range dependence and of self-sim- 
ilarity. Let X be a discrete-time process representing the number of traffic bytes collected at time 
n (i.e., the number of bytes collected in the nth 0.01-second time unit). We also assume that Xn is 
wide-sense stationary (WSS). Let X^ be a WSS process formed by averaging the process Xn 

in nonoverlapping blocks of m, i.e., 

nm) =  (Xkm_m + l + ...+Xkm)/m. (1) 

The variance of Xj^ satisfies the Yule equation: 

var X^ = (var X) /m + (2/m2) £™J\ £J = , r (h) , (2) 

where r(n) = E{(Xn+l-m) (Xj-m)} is the autocorrelation of the underlying process. 
There are a number of interesting consequences of (2). If r(i) =0 (e.g., Xn is uncorrelated), 
var X<m> = (varX)/m; therefore, the variance of the aggregated process decays hyperboli- 
cally with the aggregated size m. More generally, if 

£~= /(«)<-, (3) 
the variance of the aggregated process decays hyperbolically with m. Therefore, a WSS process 
whose autocorrelation satisfies (3) is defined to be short-range dependent (SRD) [Cox84]. 

In contrast to the SRD process whose aggregated process must have hyperbolic-decaying vari- 
ance, a process is long-range dependent (LRD) when 2£_ ^(Ä) = °°- In particular, a LRD 
process with autocorrelation function of the form r(i) °= H*, 0 < ß < 1 is called self-similar 
(see [Cox84] and [LTWW94]), where « denotes proportionality. From this simple definition, 
it can be shown that a WSS process {XJ is self-similar if its averages defined in (1) satisfy 
var X <m) « m-ß, for all m. Power spectral density is the Fourier transform of the autocorrelation 
and, for a self-similar process with parameter ß, it has the form [Cox84] 

s(/) = ^tirk=-~rwe~j2nfk,x ■f"(1"ß) a*/"*0- <4> 
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Fig. 3 STOW-E Traffic Trace WAN1 at 4 Different 
Scales: 0.01 -10 Seconds. The BRT algorithms 

housed in the AG smoothen the WAN traffic in the 
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Fig. 5 Traffic Trace LAN1 in Four Non-Overlapping 
Time Windows. Each window contains 1000 0.1- 

second samples. The traffic forms clusters of 
approximately equal magnitudes (-10000 bytes). 
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Fig. 7 Traffic Trace WAN1 in Four Non-Overlapping 
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A WSS process can also be classified as LRD or SRD by examining its Rescaled Adjusted Range 
or the R/S statistic. Let X, S2 (n) be the sample mean and variance of the observation WSS 
process Xn, respectively, and let Wk = £*= , Xt - kX , k = 1,2,..., n. The rescaled adjusted 
range is defined by 

R(n)/S(n) =  (max (0,W,,W2,...,WJ-min (0,WpW2,...,Wn))/S(n). (5) 

Then in many cases of significant theoretical and empirical interests, E [R (n) /S (n) ] «= nH, as 
n _» oo, where H = 1 - ß/2 is the Hurst parameter, if is a measure for burstiness; i.e., the higher 
H the burstier the process [LTWW94]. The underlying WSS process is of SRD when H = 0.5 
and of LRD otherwise. 

In [HDLK95], Huang et al. show that the steady-state behavior of a process formed by multiplex- 
ing two heterogenous self-similar sources will be that of the burstier one. Therefore, self-similar- 
ity is both persistent and dominating in the long run. 

4 Graphical Sample Statistics for STOW-E Traffic 

Recall from Section 3 that an asymptotic self-similar process {Xn} of Hurst parameter 
H = 1 - ß/2, 0 < ß < 1, has the following properties [Cox84]: 

(4.0) {XJ is WSS; 

(4.1) The autocorrelation r (i) «= i'~P as i -¥ ~; 

(4.2) The power spectral density g (/) «= /"<1 ~ & as / -> 0; 

(4.3) The variance of the aggregated process var X^ « m_P asm^»; 

(4.4) The rescaled adjusted range E [R (n) /S (n) ] «= nH asn-><». 

In this section, we use available graphical techniques to test the self-similar characteristics of the 
STOW-E traffic [LTWW94]. Notice that all the moments in (4.1) — (4.4) are computed by using 
sample estimates; therefore, inferences for LRD or self-similarity only refer to features produced 
by the use of sample statistics. In other words, in this analysis, LRD or self-similarity should be 
interpreted as sample LRD or sample self-similarity. Then the unknown parameters H and ß can 
be estimated by plotting (4.1) — (4.4) in log scales1. Figure 10 depicts a R/S plot (also called pox 
plot), a variance-time plot, a power spectral density plot (using periodogram estimate), and an 
autocorrelation plot for trace LAN1, respectively. Figure 11 gives the corresponding plots for 
trace WAN 1. 

In each pox plot, the straight line of slope 0.5 corresponds to an uncorrelated (i.e., non-bursty) 
process; the line of slope 1 corresponds to a process with a very high degree of burstiness. In each 
variance-time plot, the line of slope -1 or 0 corresponds to an uncorrelated process or highly 
bursty process, respectively. Notice that each pox plot in fact conforms with a multi-valued func- 
tion of the lag variable d PLTWW94]2; therefore, it is useful only if it exhibits a consistent degree 
of the sought characteristics.  In this regard, if the self-similarity manifestation of the data is not 

1. From (4.4), log£ [ (/? (n)) /S (n) ] - Hlogn; therefore, H is the slope of the R/S plot. Similarly, ß is the slope of the 
variance-time plot. 

2. In computing the R/S statistics, the n samples are segmented into windows of equal size d. Therefore, more R/S 
statistics are produced for smaller values of d. 
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evident from the pox plots alone, other techniques such as variance-time plots must be used 
instead. The WAN traffic, as a function of the aggregated size m, starts out as a non-bursty pro- 
cess as manifested in both the pox and time-variance plots in Figs. 11(a) and 11(b), then becomes 
sharply more bursty as m increases. Therefore, it has a flavor of an asymptotically self-similar 
process. From the pox plot in Fig. 10(a) the LAN traffic, as a function of the aggregated size m, 
starts out non-bursty, becomes more bursty with increasing m, then turns to a less bursty state, 
and turns to another bursty state when m grows further. It is unclear from the pox plot alone if the 
LAN process goes to a less bursty state or continues its trend when m continues to increase still 
further. However, by inspecting the plots over different scales in Fig. 2 as well as the variance- 
time plot for the LAN trace in Fig. 10(b), it still exhibits high degree of burstiness at larger scales; 
thus, the LAN traffic is comparable to an asymptotically self-similar process. However, it is 
important to keep in mind the fact that both the LAN and the WAN traffic also possesses uncorre- 
lated (i.e., Poisson-type) components. 

The asymptotic slope of the WAN pox plot (Fig. 11(a)) is unusually high (i.e., more or less close 
to unity), whereas that of the LAN traffic is inconclusive. On the other hand, the variance-time 
plots for both the LAN and WAN trace possess an asymptotic slope of about zero, which corre- 
sponds to a unity Hurst parameter. Examining both the periodogram and autocorrelation plots for 
the traffic traces also suggests that the Hurst parameter is high, see (4.1) and (4.2). Because higher 
H means higher burstiness, the STOW-E traffic exhibits an unusually high degree of burstiness in 
large time scales. Recall that self-similarity is persistent and that aggregation of self-similar pro- 
cesses will be governed by the process with the highest degree of self-similarity. Therefore, when 
other types of traffic and STOW-E traffic are integrated into a heterogenous environment, the 
resulting traffic should have characteristics of the asymptotically bursty STOW-E traffic. 

The Hurst parameter for the STOW-E traffic departs from 0.5 in large time scales because of at 
least two possible reasons. First, the traffic is asymptotically self-similar if it fulfills WSS1. The 
other reason is the possibility that the STOW-E traffic has parameters that vary with time. Inspec- 
tion of Figs. 2 - 8 suggests that this is the case. Recall that the traffic also displays uncorrelated 
characteristics in small time scales. Therefore, for all time scales, we model the STOW-E traffic as 
an uncorrelated process over non-overlapping time intervals with an approximately constant 
parameter (e.g., traffic load) in each interval; however, the parameter will vary from one time 
interval to the next. Its numerical value will determine the traffic load in each time interval (cf. 
[SlLe95]). 

Plots of (empirical) complementary cumulative distribution functions for the WAN and LAN traf- 
fic in log scales are shown in Figs. 12 and 13, respectively. Recall that the complementary cumu- 
lative distribution function is one minus the cumulative distribution function. Notice that there are 
deviations from the abscissas (i.e., down jumps) at the beginnings for both plots because STOW- 
E messages had a minimum length (-144 bytes for LAN and -80 bytes for WAN) and the traffic 
traces contain many null values (see Table 1). The plots do not fit well to any well-known distri- 
butions such as Normal, Gamma, Lognormal, or Pareto. However, the tails of the plots behave 
somewhat as straight lines, hence they match the heavy-tails property of Pareto distributions (cf. 
[GaWi94]). 

1. By definition, self-similarity implies WSS. Section 5 discusses WSS and related issues. 
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Fig. 12 Complementary Cumulative Distribution of Trace WAN1. The right tail varies somewhat as a straight line, 
which agrees with Pareto characteristics. 

1.5      2      2.5 
log10(Time Unit) 

Fig. 13 Complementary Cumulative Distribution of Trace LANl.The right tail varies somewhat as a straight line, 
which agree with Pareto characteristics. 

Several methods exist for generating synthetic traces of exactly or pseudo self-similar traffic 
[Paxs95] From the pox and variance plots (Figs. 10 and 11), the STOW-E traffic behaves like a 
process modulated by an asymptotic self-similar process. The STOW-E traffic for both the WAN 
and LAN possesses a certain degree of short-term effects, which cause a deviation from exact 
self-similarity. A simple model for an asymptotically self-similar process is a linear combination 
of exactly or asymptotically self-similar processes. The resulting process, as a function of the 
aggregated size m, will start out as a transient process then will become self-similar as m grows 
larger. 

A simple way to generate an asymptotically self-similar process, at least in principle, uses the 
M/G/oo queue model with Pareto service times [Cox84]. Specifically, let the queue input be a 
Poisson process with an arrival rate p, and the service times be Pareto random variables with the 
identically independent distribution P { Service Time < x] = 1 - (a/x) P, a, ß > 0, x > a .Then 
the queue output process obeys asymptotically self-similarity with autocorrelation function 

r(k) =  [paß/Cß-l)]**1-». <6> 
Furthermore, the self-similar output process has Poisson marginal distribution with mean 

pßfl/(ß-l). 

Another method of producing an asymptotically self-similar process is Hosking Fractional Differ- 
encing. Formally, let 

V^„ = A„, (7) 
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where A are independent identically distributed random variables, d =  (1 - ß) /2 = H - 1/2 
and ( J\ 

v*= (1-*)* = xr=0(jj (-*)*• (8) 

with Bdenoting the backward shift operator defined by BXk = Xk_x, and all factorials are 
expressed in terms of Gamma functions. The autocorrelation function of Xn satisfies 

v '       (l-d) (2-d)...(k-d) 

(-d)ik2d~l 

as*->~,     r(k)~K°j_ . (10) 

An algorithm, with AQ being a Gaussian random variable of mean 0 and variance v0, for generat- 
ing the Hosking Fractional Differencing process is also available [GaWi94]. 

5 Implications 

The BRT algorithms in the AG make the WAN traffic more uniform on smaller scales (less than 
0.1 second). However, on greater time scales, the WAN traffic remains as bursty as the prepro- 
cessed LAN traffic. This shows that the BRT algorithms housed in each AG are effective in reduc- 
ing the higher frequency components of the traffic; nevertheless, they have not reduced the low 
frequency components of the traffic. This observation agrees with the currently prevailing view 
that self-similar-type traffic poses a challenge for network congestion management. In particular, 
for networks of self-similar traffic, the overall packet-loss rate decreases very slowly with increas- 
ing buffer sizes, which in turn increase packet delays. 

The impacts of self-similarity or long-range dependence on present and future networks deserve 
more study. In [PaF194], Paxson and Floyd observe that Poisson models, or models that do not 
accurately reflect the long-range dependence, underestimate performance measures such as aver- 
age packet delays or maximum buffer sizes. If the traffic does obey the Poisson models, network 
congestion that causes packet drops can be easily handled by linearly increasing the buffer sizes. 
In contrast, long-range dependent traffic can cause very long periods of congestions that can not 
be relieved by the methods used for the Poisson models. Furthermore, application hosts producing 
self-similar traffic, if granted higher priority, will starve the lower priority hosts for long periods 
of time. Self-similar traffic can also have a deleterious impact on the admission control polices 
that are based on recent traffic levels. Such policies, even though effective for certain types of 
traffic, do not work well for highly bursty traffic, which can produce a long peak period right after 
the measured low load period upon which the policy is based. 

Having mentioned the implications of truly LRD or self-similarity on network management, one 
still has to face with the possibility of non-WSS traffic. By definition, LRD or self-similar pro- 
cesses must be WSS. Furthermore, generally, sample analysis used in this paper is accurate only 
for WSS series. Are the empirical STOW-E traces, as well as traces collected by other researchers, 
reasonably approximated by WSS processes? Mathematically, WSS is a simple and a precise con- 
cept. A process {Xn} is WSS if it satisfies the following three conditions: 

(5.1)£(XJ) <°° for all n, 

(5.2)£(X„) = m for all n, and 
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(5.3) E{(Xr-m) (Xs-m)}  = E{ (Xr + t-m) (Xs + t-m) } for all r, s, and t. 

Suppose that one has collected Nempirical data points XpX2, ...,XN, where N is a "large" num- 
ber, say N = 105. How can one test to see if the data is WSS? At first sight, the problem seems 
straightforward. Define Sn = (Xl+X2+...+ Xn) /n as the sample mean, and test to see if Sn 

approaches to a constant when n increases. Suppose the answer is yes; i.e., Sn -> |X for some finite 
number \i. Can one conclude that EXn «\i as required by the condition (5.2)? A simple counter- 
example is the process Xn = \/n. Clearly, the process is not WSS, even though its sample mean 
converges to zero; i.e., u. = 0. Testing condition (5.3) is even more difficult if not impossible. 
Thus, validation of WSS for an empirical data set needs further investigations. 

Therefore, in general, we have to assume that the data represent a non-WSS process for which 
sample analysis is no longer accurate. Many researchers suggest decomposing a non-WSS pro- 
cess X   into two components 

*„ = '« + rn, (ID 

where t is a deterministic function (i.e., the trend component) that only depends on the time n 
and Y a WSS process. However, we have to identify the trend component in addition to testing 
to see if the second component is WSS. The problematic nature of WSS assumptions is discussed 
in detail in [Klem74] and [DLOR95]. 

As previously mentioned, many papers report evidence of self-similarity in networking traffic. 
Queueing analyses indicate that self-similar traffic will cause severe networking problems such as 
long packet delay and high packet loss. Have such problems occurred frequently in current net- 
works? We underestimate the burstiness of the traffic by using the simple Poisson models. Do we 
overestimate the traffic burstiness by the self-similar models? Is the cost of underestimating far 
exceeding that of overestimating? What is the cost of assuming WSS (a necessary condition for 
self-similarity) when in fact the data do not represent a WSS process? As with other researchers, 
in this analysis, we consider the STOW-E empirical data as if they obey WSS so that we can use 
available sample statistical techniques in our studies. The STOW-E traffic, as seen from time-vari- 
ance and pox plots, exhibits interleaving of uncorrelated and strongly correlated components. 
Should we pay attention to intermittent short term effects or only to long term effects? It is well 
known that time-dependent processes (i.e., non-WSS processes) can produce characteristics 
resembling correlated components or self-similarity [Klem74]. 

Other issues when analyzing the empirical data are the sizes of the traces and the rate of conver- 
gence of the results. Should we consider a long trace as a whole with many time varying parame- 
ters or should we segment the trace into shorter traces and study each one independently? Sample 
analysis shows that the STOW-E traffic is asymptotically bursty. What is the difference, concern- 
ing network management, between two processes which both have the same degree of burstiness 
eventually, but reaching the same level of burstiness at different time scales (i.e., with different 
rates). For example, one process has Hurst parameter 0.9 after scaling 1 second or more; and the 
other process has the same Hurst parameter only after scaling 10 seconds or more. Should we 
remove traffic irregularities such as system errors and malfunctions from our data before we actu- 
ally do the analysis? Such irregularities always exist in real networks and network planners must 
take them into consideration when they design the network protocols. 
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6 Conclusions 

The STOW-E traffic shows characteristics that would be produced by Poisson-type and self-simi- 
lar processes. Since time-dependent processes can yield characteristics resembling strongly corre- 
lated components or self-similarity, the traffic can be modeled as an uncorrelated process 
modulated by another asymptotically self-similar process. Furthermore, the traffic exhibits a very 
high degree of burstiness in larger time scales. Popular traffic models include self-similar (e.g., 
ethernet and VBR video) and Poisson processes (e.g., user-initiated TCP session arrivals 
[PaF194]). With the advent of high speed networking technologies, which in turn stimulate newer 
applications, more exotic types of traffic are possible in the future. However, traffic of sample 
self-similar types will play a major role for many years to come. Aggregation of self-similar pro- 
cesses, or aggregation of self-similar processes and Poisson-type processes, will produce a self- 
similar process with the degree of self-similarity determined by the component process of the 
highest self-similarity. Future STOW networks such as STOW-97 and the eventual ADS will sup- 
port traffic of STOW-E type in addition to others; therefore, the resulting integrated traffic will be 
at least as bursty as STOW-E-like traffic. 

Appendix A 

This appendix briefly discusses the last two data traces in Table 1. The traces, which were mea- 
sured at the same time (a 30-minute duration), contain the STOW-E traffic on each side of the AG 
at Fort Rucker; i.e., trace WAN2 represents the WAN traffic, whereas trace LAN2 represents the 
LAN traffic. We plot the overall traffic profiles for the WAN and the LAN trace in Figs. 14 and 15, 
respectively, at 3 different time scales since both traces only have about 180000 data points (i.e., 
relatively short traces). The LAN traffic exhibits high burstiness in all three time scales; whereas 
the WAN trace in the finest 0.01-second time scale looks smooth as a result of the BRT algorithms 
housed in the AG. However, high burstiness begins to appear when the aggregation size increases. 
This observation agrees with that for traces WAN1 and LAN1; i.e., the BRT techniques are only 
effective for short periods (i.e., for time scales of 0.1 second or less) in smoothing out the LAN 
traffic before it goes into the WAN. The WAN traffic remains as bursty as the LAN traffic in 
higher time scales. 

The window plots in 0.01-second and 0.1-second units for trace LAN2 appear in Figs. 16 and 17, 
respectively. The traffic behaves like a train of clusters whose denseness varies according to the 
traffic-load level and time. Fig. 18 depicts the traffic windows for trace WAN2; the windows show 
similar characteristics to those of trace WAN1 in Fig. 7. Figures 19 and 20 give sample statistical 
quantifications for the two traces. Generally, we can draw the same conclusion as we did in Sec- 
tion 4 for traces WAN1 and LAN1; i.e., the LAN traffic possesses interleaving of smoothness and 
burstiness in small time scales and becomes more bursty in larger scales, whereas the WAN traffic 
shows a more consistent degree of smoothness in small time scales and high degree of burstiness 
in larger time scales. Therefore, a simple mathematical model for the traffic is an uncorrelated 
process modulated by another asymptotically self-similar process. The last two figures (Figs. 21 
and 22) depict the empirical complementary cumulative distribution functions for the traces. As 
for traces WAN1 and LAN1, the distribution functions for traces WAN2 and LAN2 resemble 
somewhat as straight lines at the far right ends, consistent with the heavy-tail characteristics of 
Pareto distributions. 
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Fig. 14 Trace WAN2 at 3 Different Time Scales: 0.01 
-1 Second. The BRT algorithms housed in the AG 
smoothen the WAN trace in the 0.01-second time 

scale. 

Fig. 15 Trace LAN2 at 3 Different Time Scales: 0.01 
-1 Second. The traffic shows non-diminishing 

burstiness in all three time scales. 
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Fig. 16 Trace LAN2 in Four Non-Overlapping Time 
Windows. Each window contains 1000 0.01-second 
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equal magnitudes (-600 bytes) in some windows. 

Fig. 17 Trace LAN2 in Four Non-Overlapping Time 
Windows. Each window contains 1000 0.1-second 

samples. The traffic forms clusters of approximately 
equal magnitudes (-1500 bytes) in some windows. 
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Fig. 22 Complementary Cumulative Distribution of 
Trace WAN2.The right tail varies somewhat as a 

straight line, which agrees with Pareto 
characteristics. 
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Appendix B 

ADS 

AG 

ARPA 

AVTB 

BRT 

DARPA 

Dlogger 

DIS 

DSI 

GMT 

HPAG 

IP 

LAN 

LRD 

NRaD 

PDU 

PICA 

R/S 

SRD 

SIMNET 

STOW-E 

Tl 

UDP 

VBR 

WAN 

WANLogger 

WSS 

Advanced Distributed Simulation 

Application Gateway 

Advanced Research Projects Agency 

Aviation Test Bed 

Bandwidth-Demand Reduction Technique 

Defense Advanced Research Projects Agency 

Data Logger/LAN Logger 

Distributed Interactive Simulation 

Defense Simulation Internet 

Greenwich Mean Time 

High Performance Application Gateway 

Internet Protocol 

Local Area Network 

Long-Range Dependence/Dependent 

Naval Command Control and Ocean Surveillance Center, 
Research, Development, Test and Evaluation Division 

Protocol Data Unit 

Protocol Independent Compression Algorithm 

Rescaled Adjusted Range 

Short-Range Dependence/Dependent 

Simulation Network 

Synthetic Theater of War-Europe 

Digital Signal 1 

User Datagram Protocol 

Variable Bit Rate 

Wide Area Network 

Wide Area Network Logger 

Wide-Sense Stationary/Stationarity 
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